We develop theoretically and demonstrate experimentally a universal dynamical
decoupling method for robust quantum sensing with unambiguous signal
identification. Our method uses randomisation of control pulses to suppress
simultaneously two types of errors in the measured spectra that would otherwise
lead to false signal identification. These are spurious responses due to
finite-width π pulses, as well as signal distortion caused by π pulse
imperfections. For the cases of nanoscale nuclear spin sensing and AC
magnetometry, we benchmark the performance of the protocol with a single
nitrogen vacancy centre in diamond against widely used non-randomised pulse
sequences. Our method is general and can be combined with existing multipulse
quantum sensing sequences to enhance their performance