research

Exciton-plasmon energy exchange drives the transition to strong coupling regime

Abstract

We present a model for exciton-plasmon coupling based on an energy exchange mechanism between quantum emitters (QE) and localized surface plasmons in metal-dielectric structures. Plasmonic correlations between QEs give rise to a collective state exchanging its energy cooperatively with a resonant plasmon mode. By defining carefully the plasmon mode volume for a QE ensemble, we obtain a relation between QE-plasmon coupling and a cooperative energy transfer rate that is expressed in terms of local fields. For a single QE near a sharp metal tip, we find analytically the enhancement factor for QE-plasmon coupling relative to QE coupling to a cavity mode. For QEs distributed in an extended region enclosing a plasmonic structure, we find that the ensemble QE-plasmon coupling saturates to a universal value independent of system size and shape, consistent with the experiment.Comment: 8 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/04/2021