A magnetophotoluminescence study of the carrier transfer with hybrid
InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out
where we observe an unsual dependence of the photoluminescence (PL) on the GaAs
barrier thickness at strong magnetic field and excitation density. For the case
of a thin barrier the QW PL intensity is observed to increase at the expense of
a decrease in the QD PL intensity. This is attributed to changes in the
interplane carrier dynamics in the QW and the wetting layer (WL) resulting from
increasing the magnetic field along with changes in the coupling between QD
excited states and exciton states in the QW and the WL