Covering and tiling hypergraphs with tight cycles

Abstract

Given 3ks3 \leq k \leq s, we say that a kk-uniform hypergraph CskC^k_s is a tight cycle on ss vertices if there is a cyclic ordering of the vertices of CskC^k_s such that every kk consecutive vertices under this ordering form an edge. We prove that if k3k \ge 3 and s2k2s \ge 2k^2, then every kk-uniform hypergraph on nn vertices with minimum codegree at least (1/2+o(1))n(1/2 + o(1))n has the property that every vertex is covered by a copy of CskC^k_s. Our result is asymptotically best possible for infinitely many pairs of ss and kk, e.g. when ss and kk are coprime. A perfect CskC^k_s-tiling is a spanning collection of vertex-disjoint copies of CskC^k_s. When ss is divisible by kk, the problem of determining the minimum codegree that guarantees a perfect CskC^k_s-tiling was solved by a result of Mycroft. We prove that if k3k \ge 3 and s5k2s \ge 5k^2 is not divisible by kk and ss divides nn, then every kk-uniform hypergraph on nn vertices with minimum codegree at least (1/2+1/(2s)+o(1))n(1/2 + 1/(2s) + o(1))n has a perfect CskC^k_s-tiling. Again our result is asymptotically best possible for infinitely many pairs of ss and kk, e.g. when ss and kk are coprime with kk even.Comment: Revised version, accepted for publication in Combin. Probab. Compu

    Similar works