This document introduces basics in data preparation, feature selection and
learning basics for high energy physics tasks. The emphasis is on feature
selection by principal component analysis, information gain and significance
measures for features. As examples for basic statistical learning algorithms,
the maximum a posteriori and maximum likelihood classifiers are shown.
Furthermore, a simple rule based classification as a means for automated cut
finding is introduced. Finally two toolboxes for the application of statistical
learning techniques are introduced.Comment: 12 pages, 8 figures. Part of the proceedings of the Track
'Computational Intelligence for HEP Data Analysis' at iCSC 200