We present a general rate duality between the multiple access channel (MAC)
and the broadcast channel (BC) which is applicable to systems with and without
nonlinear interference cancellation. Different to the state-of-the-art rate
duality with interference subtraction from Vishwanath et al., the proposed
duality is filter-based instead of covariance-based and exploits the arising
unitary degree of freedom to decorrelate every point-to-point link. Therefore,
it allows for noncooperative stream-wise decoding which reduces complexity and
latency. Moreover, the conversion from one domain to the other does not exhibit
any dependencies during its computation making it accessible to a parallel
implementation instead of a serial one. We additionally derive a rate duality
for systems with multi-antenna terminals when linear filtering without
interference (pre-)subtraction is applied and the different streams of a single
user are not treated as self-interference. Both dualities are based on a
framework already applied to a mean-square-error duality between the MAC and
the BC. Thanks to this novel rate duality, any rate-based optimization with
linear filtering in the BC can now be handled in the dual MAC where the arising
expressions lead to more efficient algorithmic solutions than in the BC due to
the alignment of the channel and precoder indices.Comment: Submitted to IEEE Globecom 2008; Fixed dimensions of channel matrix
H_k and covariance matrix Z_k, slightly modified conclusio