In order to improve our understanding of substellar formation, we have
performed a compositional and structural study of a brown dwarf disk.
We present the result of photometric, spectroscopic and imaging observations
of 2MASS J04442713+2512164, a young brown dwarf (M7.25) member of the Taurus
association. Our dataset, combined with results from the literature, provides a
complete coverage of the spectral energy distribution from the optical to the
millimeter including the first photometric measurement of a brown dwarf disk at
3.7mm, and allows us to perform a detailed analysis of the disk properties.
The target was known to have a disk. High resolution optical spectroscopy
shows that it is intensely accreting, and powers a jet and an outflow. The disk
structure is similar to that observed for more massive TTauri stars. Spectral
decomposition models of Spitzer/IRS spectra suggest that the mid-infrared
emission from the optically thin disk layers is dominated by grains with
intermediate sizes (1.5micron). Crystalline silicates are significantly more
abondant in the outer part and/or deeper layers of the disk, implying very
efficient mixing and/or additional annealing processes. Sub-millimeter and
millimeter data indicate that most of the disk mass is in large grains (>1mm)Comment: 17 pages, 10 figures, 7 tables, accepted for A&