CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Magnetic force microscopy investigation of the magnetization reversal of permalloy particles at high temperatures
Authors
Bizyaev D.
Bukharaev A.
+3 more
Chuklanov A.
Khanipov T.
Nurgazizov N.
Publication date
1 January 2014
Publisher
Abstract
© 2014, Pleiades Publishing, Ltd. The magnetization reversal of an array of permalloy particles formed by scanning probe lithography on the silicon dioxide surface has been investigated in the temperature range from room temperature to 800 K. Using scanning magnetic force microscopy and numerical calculations of the magnetic anisotropy field of a particle at different temperatures, it has been shown that an increase in the temperature leads to a decrease in the external magnetic field required to reverse the magnetization direction of the particle. From the obtained results, it has been concluded that the magnetization reversal of the studied particles is accompanied by the formation of an intermediate state with an inhomogeneous magnetization structure
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/138142
Last time updated on 07/05/2019