Mon travail de thèse se place dans le cadre du projet ANR TUCCIRM de développement d’un système de thérapie par ultrasons focalisés de haute intensité (HIFU) dédié au cerveau implantable dans un IRM clinique 1,5 T. Les développements IRM ont été l’objet de mon travail. Dans un premier temps, l’IRM a été utilisée pour suivre l’évolution en température des tissus en cours de traitement. Pour cela, nous avons tout d’abord réalisé une étude d’optimisation et de comparaison de séquences de thermométrie basées sur le principe du décalage chimique (PRFS). Puis, nous avons optimisé le rapport signal sur bruit pour améliorer la qualité des images ainsi que la précision en température. Ces développements ont été appliqués au cours de tests HIFU suivi par IRM de têtes de cadavres humains.Dans un deuxième temps, l’IRM a été utilisée pour caractériser la viscoélasticité des tissus cérébraux par la technique d’élastograhie par résonance magnétique. Ces propriétés changeant avec la température, cette méthode permettrait de suivre l’état des tissus pendant le traitement HIFU pour en déterminer l’effet thermique. Dans ce contexte, nous avons développé un nouveau concept de générateur d’onde, testé ensuite sur six rats in vivo.My Ph.D. work is a part of the ANR TUCCIRM project, which consist in developing a treatment system dedicated to the brain using High Intensity Focalized Ultrasound (HIFU) usable with clinical 1.5T MRI. My work was mainly focus to MRI development.During the first part of my work, we used the MRI to observe the evolution of the temperature of tissue inside the brain during the ultrasound treatment. Firstly, based on the chemical shift principle, we perform an optimization study and thermometric sequence comparison. Then an optimization of the signal-to-noise ratio has been realized to improve the image quality and then the temperature measurement precision. This development has been used during HIFU test on human head corpse following the evolution of the temperature with MRI. In a second part, MRI was used to characterize the viscoelasticity of brain tissue using elastography by magnetic resonances. These properties are evolving with the temperature, so this method should allow following tissue state during HIFU treatment to determine temperature effect on brain tissue. For that purposes we develop a new concept of wave generator, witch has been tested on 6 rats in vivo