On the Complexities of the Design of Water Distribution Networks

Abstract

Water supply is one of the most recognizable and important public services contributing to quality of life. Water distribution networks WDNs are extremely complex assets. A number of complex tasks, such as design, planning, operation, maintenance, and management, are inherently associated with such networks. In this paper, we focus on the design of a WDN, which is a wide and open problem in hydraulic engineering. This problem is a large-scale combinatorial, nonlinear, nonconvex, multiobjective optimization problem, involving various types of decision variables and many complex implicit constraints. To handle this problem, we provide a synergetic association between swarm intelligence and multiagent systems where human interaction is also enabled. This results in a powerful collaborative system for finding solutions to such a complex hydraulic engineering problem. All the ingredients have been integrated into a software tool that has also been shown to efficiently solve problems from other engineering fields.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Educacion y Ciencia, and ACOMP/2010/146 of the Conselleria d'Educacio of the Generalitat Valenciana. The first author is also indebted to the Universitat Politecnica de Valencia for the sabbatical leave granted during the first semester of 2011. The use of English in this paper was revised by John Rawlins.Izquierdo Sebastián, J.; Montalvo Arango, I.; Pérez García, R.; Matías, A. (2012). On the Complexities of the Design of Water Distribution Networks. Mathematical Problems in Engineering. 2012:1-25. https://doi.org/10.1155/2012/9479611252012Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Izquierdo, J., Pérez, R., & Iglesias, P. L. (2004). Mathematical models and methods in the water industry. Mathematical and Computer Modelling, 39(11-12), 1353-1374. doi:10.1016/j.mcm.2004.06.012Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Martínez, J. B. (2010). Cost and reliability comparison between branched and looped water supply networks. Journal of Hydroinformatics, 12(2), 150-160. doi:10.2166/hydro.2009.080Goulter, I. C. (1992). Systems Analysis in Water‐Distribution Network Design: From Theory to Practice. Journal of Water Resources Planning and Management, 118(3), 238-248. doi:10.1061/(asce)0733-9496(1992)118:3(238)Park, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)Tanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Morgan, D. R., & Goulter, I. C. (1985). Optimal urban water distribution design. Water Resources Research, 21(5), 642-652. doi:10.1029/wr021i005p00642Walters, G. A., & Knezevic, J. (1989). Discussion of « Reliability‐Based Optimization Model for Water Distribution Systems » by Yu‐Chun Su, Larry W. Mays, Ning Duan, and Kevin E. Lansey (December, 1987, Vol. 113, No. 12). Journal of Hydraulic Engineering, 115(8), 1157-1158. doi:10.1061/(asce)0733-9429(1989)115:8(1157)LOGANATHAN, G. V., SHERALI, H. D., & SHAH, M. P. (1990). A TWO-PHASE NETWORK DESIGN HEURISTIC FOR MINIMUM COST WATER DISTRIBUTION SYSTEMS UNDER A RELIABILITY CONSTRAINT. Engineering Optimization, 15(4), 311-336. doi:10.1080/03052159008941160Bouchart, F., & Goulter, I. (1991). Reliability Improvements in Design of Water Distribution Networks Recognizing Valve Location. Water Resources Research, 27(12), 3029-3040. doi:10.1029/91wr00590Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Xu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Su, Y., Mays, L. W., Duan, N., & Lansey, K. E. (1987). Reliability‐Based Optimization Model for Water Distribution Systems. Journal of Hydraulic Engineering, 113(12), 1539-1556. doi:10.1061/(asce)0733-9429(1987)113:12(1539)Cullinane, M. J., Lansey, K. E., & Mays, L. W. (1992). Optimization‐Availability‐Based Design of Water‐Distribution Networks. Journal of Hydraulic Engineering, 118(3), 420-441. doi:10.1061/(asce)0733-9429(1992)118:3(420)Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Dong, Y., Tang, J., Xu, B., & Wang, D. (2005). An application of swarm optimization to nonlinear programming. Computers & Mathematics with Applications, 49(11-12), 1655-1668. doi:10.1016/j.camwa.2005.02.006Jin, Y.-X., Cheng, H.-Z., Yan, J., & Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3-4), 227-233. doi:10.1016/j.epsr.2006.02.016Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Molina, J., Santana, L. V., Hernández-Díaz, A. G., Coello Coello, C. A., & Caballero, R. (2009). g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2), 685-692. doi:10.1016/j.ejor.2008.07.01510.1029/89WR02879. (2010). Water Resources Research. doi:10.1029/89wr02879Savic, D. A., & Walters, G. A. (1997). Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 123(2), 67-77. doi:10.1061/(asce)0733-9496(1997)123:2(67)Zecchin, A. C., Simpson, A. R., Maier, H. R., & Nixon, J. B. (2005). Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Transactions on Evolutionary Computation, 9(2), 175-191. doi:10.1109/tevc.2005.844168Yurong Liu, Zidong Wang, Jinling Liang, & Xiaohui Liu. (2009). Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks With Mixed Mode-Dependent Time Delays. IEEE Transactions on Neural Networks, 20(7), 1102-1116. doi:10.1109/tnn.2009.2016210Jinling Liang, Zidong Wang, & Xiaohui Liu. (2009). State Estimation for Coupled Uncertain Stochastic Networks With Missing Measurements and Time-Varying Delays: The Discrete-Time Case. IEEE Transactions on Neural Networks, 20(5), 781-793. doi:10.1109/tnn.2009.2013240Zidong Wang, Yao Wang, & Yurong Liu. (2010). Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays. IEEE Transactions on Neural Networks, 21(1), 11-25. doi:10.1109/tnn.2009.2033599Bo Shen, Zidong Wang, & Xiaohui Liu. (2011). Bounded HH_{\infty} Synchronization and State Estimation for Discrete Time-Varying Stochastic Complex Networks Over a Finite Horizon. IEEE Transactions on Neural Networks, 22(1), 145-157. doi:10.1109/tnn.2010.209066

    Similar works

    Full text

    thumbnail-image