Investigation of HfO2-based resistive RAM cells by electrical characterization and atomistic simulations

Abstract

La mémoire NAND Flash représente une part importante dans le marché des circuits intégrés et a bénéficié de la traditionnelle miniaturisation de l’industrie des sémiconducteurs lui permettant un niveau d’intégration élevé. Toutefois, cette miniaturisation semble poser des sérieux problèmes au-delà du noeud 22 nm. Dans un souci de dépasser cette limite, des solutions mémoires alternatives sont proposées parmi lesquelles la mémoire résistive (RRAM) se pose comme un sérieux candidat pour le remplacement de NAND Flash. Ainsi, dans cette thèse nous essayons de répondre à des nombreuses questions ouvertes sur les dispositifs RRAM à base d’oxyde d’hafnium (HfO2) en particulier en adressant le manque de compréhension physique détaillée sur leur fonctionnement et leur fiabilité. L’impact de la réduction de taille des RRAM, le rôle des électrodes et le processus de formation et de diffusion des défauts sont étudiés. L’impact de l’alliage/dopage de HfO2 avec d’autres matériaux pour l’optimisation des RRAM est aussi abordé. Enfin, notre étude tente de donner quelques réponses sur la formation du filament conducteur, sa stabilité et sa possible composition.Among non-volatile memory technologies, NAND Flash represents a significant portion in the IC market and has benefitted from the traditional scaling of semiconductor industry allowing its high density integration. However, this scaling seems to be problematic beyond the 22 nm node. In an effort to go beyond this scaling limitation, alternative memory solutions are proposed among which Resistive RAM (RRAM) stands out as a serious candidate for NAND Flash replacement. Hence, in this PhD thesis we try to respond to many open questions about RRAM devices based on hafnium oxide (HfO2), in particular, by addressing the lack of detailed physical comprehension about their operation and reliability. The impact of scaling, the role of electrodes, the process of defects formation and diffusion are investigated. The impact of alloying/doping HfO2 with other materials for improved RRAM performance is also studied. Finally, our study attempts to provide some answers on the conductive filament formation, its stability and possible composition

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 20/05/2019