L'objectif principal de cette étude était de réaliser une modélisation du procédé cold spray, fondée sur l'observation expérimentale et sur des modèles physiques capables de prédire la microstructure du dépôt en fonction de la morphologie de la poudre et des paramètres de projection. Pour y arriver, le travaux se sont organisés autour de trois axes principaux de recherche : caractérisation de la poudre en 3D, simulations d'impact par éléments finis et modélisation d'empilement. Un procédé innovant de caractérisation morphologique de la poudre en 3D, utilisant la microtomographie par rayons X, a été développé. Le traitement des images résultantes a permis d'isoler les particules individuelles, regroupées dans une bibliothèque 3D d'environ 18000 objets. Leur taille et forme ont été caractérisées quantitativement. La méthode de partitionnement des données dite « K-means » a été utilisée pour la répartition des particules en 7 classes de forme.Le deuxième axe de recherche portait sur la simulation d'écrasement des particules, par la méthode des éléments finis (logiciel Abaqus, approche lagrangienne). L'utilisation d'outils de maillage adaptés a permis de réaliser des simulations d'écrasement des particules réelles (en provenance de la bibliothèque 3D). L'automatisation de ces simulations visait la possibilité d'en effectuer en grand nombre mais, face aux problèmes de robustesse rencontrés, le nombre de simulations menées à bien fut limité.Le troisième axe de recherche portait sur le développement d'un modèle d'empilement itératif, fondé sur l'utilisation des résultats des simulations d'écrasement. Ce modèle a été mis en place en 2D par simplicité. Différentes implémentations ont été essayées mais leur développement ne fut pas suffisamment abouti pour l'application à des cas pratiques.La validation des modèles s'est limitée aux simulations d'impact par éléments finis. Les deux types de splats (Ta sur Cu et Ta sur Ta), exigeant de méthodes d'observation expérimentale différentes, ont été traités séparément. Les premiers ont pu être directement observés par microtomographie et regroupés dans une bibliothèque 3D des splats Ta sur Cu. Ensuite, ils ont été comparés, de façon statistique mais aussi individuellement, aux correspondants simulés sans qu'aucune divergence évidente n'apparaisse. Le cas des Ta sur Ta est, en revanche, compliqué du fait de l'homogénéité du système qui empêche l'utilisation directe de la microtomographie. Bien que différentes méthodes visant à apporter une couche du contraste entre particule et substrat aient été essayées, la construction d'une bibliothèque 3D des splats Ta sur Ta n'a pas été possible.L'optimisation des poudres (choix de la granulométrie et de la forme, en vue d'une application donnée) est une des utilisations envisagées pour le modèle d'empilement, ainsi que la simulation de la projection de poudres composites (métal et oxyde). L'inclusion dans le modèle des transformations de phase ouvrirait la porte de la famille de la projection plasma ou de la fabrication additive. Plus généralement, la philosophie derrière la modélisation d'empilement développée dans cette thèse peut être appliquée à tout procédé où l'apport de matière est fait à partir d'une « poudre » subissant une certaine transformation. Enfin, le couplage avec un modèle de comportement pourrait permettre l'estimation de certaines propriétés physiques (par exemple, les conductivités thermique et électrique), dépendant de la microstructure du dépôt.This study on the cold spray process aimed at achieving an original coating build-up model, capable of predicting the resulting microstructure as a function of powder morphology and process parameters. The work focused on three main interrelated subjects: 3D powder characterization, simulation of individual impacts on a flat substrate by the finite element method and deposition build-up modeling.An innovative method based on microtomographical observations was used for 3D characterization of the powder. Image analysis allowed to separate single powder particles and to gather them into a 3D collection containing approximatively 18 000 objects. Their size and shape were quantitatively measured. A cluster analysis method (K-means) was then applied to this data set to divide the particles into 7 classes based on their shape.The second main research topic consisted in performing particle impact simulations on a flat substrate by the finite element method (using the commercial software Abaqus). The use of dedicated meshing tools allowed to simulate the impact of real particles, as observed by microtomography. Scripting techniques were used to carry out a large number of these simulations but, due to limited robustness of the procedure, only few of them were successfully conducted.The third research area focused on the development of a deposition build-up model (in 2D to allow a simpler implementation). Data from finite element results were interpolated and used in an iterative simulation, where impacting particles were deposited one by one. Different approaches were tested but the development of the model could not be completed in the framework of this thesis.Model validation could be performed on finite element simulations. The two kinds of splats (Ta on Cu and Ta on Ta) were considered separately. Concerning the first, direct microtomographical imaging could be applied, due to the heterogeneity of materials. Splats were observed, individually separated and gathered in a 3D collection as done before with powder particles. Simulated and observed splats could then be compared on a statistical basis. No particular discrepancy was observed, confirming the impact simulation method used. The second kind of splats (Ta on Ta) was complicated by the homogeneity of the materials, preventing the use of microtomography. The deposition (before spraying) of a contrast layer between Ta substrate and Ta particle was tried by different techniques. The only method giving exploitable results was the chemical vapor deposition of a Fe layer onto the powder particles. However, the small number of adherent particles and the weak contrast obtained in the images prevented the use of the methods already applied to powder particles and Ta splats onto Cu.The optimization of powder granulometry and shape (towards a specific application) is one of the main expected applications of the deposition build-up model, together with the simulation of composite powders (typically, metal and oxide). The involvement of phase transformation phenomena into the model could extend its application to the whole family of thermal spray processes (plasma, HVOF, etc.) or to other additive manufacturing techniques. In general, the philosophy behind our modeling approach could be applied to every manufacturing/coating technique where the supply material is in powder form and undergoes a certain transformation during the process. Finally, the coupling of such a model with homogenization techniques would allow the prediction of macroscopic properties depending on deposit microstructure (e.g. thermal or electrical conductivity)