research

Nonlinear electromagnetic response of graphene: Frequency multiplication and the self-consistent-field effects

Abstract

Graphene is a recently discovered carbon based material with unique physical properties. This is a monolayer of graphite, and the two-dimensional electrons and holes in it are described by the effective Dirac equation with a vanishing effective mass. As a consequence, electromagnetic response of graphene is predicted to be strongly non-linear. We develop a quasi-classical kinetic theory of the non-linear electromagnetic response of graphene, taking into account the self-consistent-field effects. Response of the system to both harmonic and pulse excitation is considered. The frequency multiplication effect, resulting from the non-linearity of the electromagnetic response, is studied under realistic experimental conditions. The frequency up-conversion efficiency is analysed as a function of the applied electric field and parameters of the samples. Possible applications of graphene in terahertz electronics are discussed.Comment: 14 pages, 7 figures, invited paper written for a special issue of JPCM "Terahertz emitters

    Similar works