Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer

Abstract

PURPOSE: To study target-specific delivery of doxorubicin (Dox) using an RNA aptamer against epithelial cell adhesion molecule (EpCAM) in retinoblastoma (RB) cells. METHODS: The binding affinity of the EpCAM aptamer to RB primary tumor cells, Y79 and WERI-Rb1 cells, and Müller glial cell lines were evaluated with flow cytometry. Formation of physical conjugates of aptamer and Dox was monitored with spectrofluorimetry. Cellular uptake of aptamer-Dox conjugates was monitored through fluorescent microscopy. Drug efficacy was monitored with cell proliferation assay. RESULTS: The EpCAM aptamer (EpDT3) but not the scrambled aptamer (Scr-EpDT3) bound to RB tumor cells, the Y79 and WERI-Rb1 cells. However, the EpCAM aptamer and the scrambled aptamer did not bind to the noncancerous Müller glial cells. The chimeric EpCAM aptamer Dox conjugate (EpDT3-Dox) and the scrambled aptamer Dox conjugate (Scr-EpDT3-Dox) were synthesized and tested on the Y79, WERI-Rb1, and Müller glial cells. The targeted uptake of the EpDT3-Dox aptamer caused cytotoxicity in the Y79 and WERI-Rb1 cells but not in the Müller glial cells. There was no significant binding or consequent cytotoxicity by the Scr-EpDT3-Dox in either cell line. The EpCAM aptamer alone did not cause cytotoxicity in either cell line. CONCLUSIONS: The results show that the EpCAM aptamer-Dox conjugate can selectively deliver the drug to the RB cells there by inhibiting cellular proliferation and not to the noncancerous Müller glial cells. As EpCAM is a cancer stem cell marker, this aptamer-based targeted drug delivery will prevent the undesired effects of non-specific drug activity and will kill cancer stem cells precisely in RB

    Similar works

    Full text

    thumbnail-image

    Available Versions