Accurate determination of the rotation rate in the radiative zone of the sun
from helioseismic observations requires rotational frequency splittings of
exceptional quality as well as reliable inversion techniques. We present here
inferences based on mode parameters calculated from 2088-days long MDI, GONG
and GOLF time series that were fitted to estimate very low frequency rotational
splittings (nu < 1.7 mHz). These low frequency modes provide data of
exceptional quality, since the width of the mode peaks is much smaller than the
rotational splitting and hence it is much easier to separate the rotational
splittings from the effects caused by the finite lifetime and the stochastic
excitation of the modes. We also have implemented a new inversion methodology
that allows us to infer the rotation rate of the radiative interior from mode
sets that span l=1 to 25. Our results are compatible with the sun rotating like
a rigid solid in most of the radiative zone and slowing down in the core (R_sun
< 0.2). A resolution analysis of the inversion was carried out for the solar
rotation inverse problem. This analysis effectively establishes a direct
relationship between the mode set included in the inversion and the sensitivity
and information content of the resulting inferences. We show that such an
approach allows us to determine the effect of adding low frequency and low
degree p-modes, high frequency and low degree p-modes, as well as some g-modes
on the derived rotation rate in the solar radiative zone, and in particular the
solar core. We conclude that the level of uncertainties that is needed to infer
the dynamical conditions in the core when only p-modes are included is unlikely
to be reached in the near future, and hence sustained efforts are needed
towards the detection and characterization of g-modes.Comment: Accepted for publication in Astrophysical journal. 15 pages, 19
figure