Consider a set of labels L and a set of trees {\mathcal T} = \{{\mathcal
T}^{(1), {\mathcal T}^{(2), ..., {\mathcal T}^{(k) \$ where each tree
{\mathcal T}^{(i)isdistinctlyleaf−labeledbysomesubsetofL.Onefundamentalproblemistofindthebiggesttree(denotedassupertree)torepresent\mathcal T}whichminimizesthedisagreementswiththetreesin{\mathcal T}undercertaincriteria.Thisproblemfindsapplicationsinphylogenetics,database,anddatamining.Inthispaper,wefocusontwoparticularsupertreeproblems,namely,themaximumagreementsupertreeproblem(MASP)andthemaximumcompatiblesupertreeproblem(MCSP).ThesetwoproblemsareknowntobeNP−hardfork \geq 3.ThispapergivesthefirstpolynomialtimealgorithmsforbothMASPandMCSPwhenbothkandthemaximumdegreeD$
of the trees are constant