research

Asymptotic behavior of beta-integers

Abstract

Beta-integers (``β\beta-integers'') are those numbers which are the counterparts of integers when real numbers are expressed in irrational basis β>1\beta > 1. In quasicrystalline studies β\beta-integers supersede the ``crystallographic'' ordinary integers. When the number β\beta is a Parry number, the corresponding β\beta-integers realize only a finite number of distances between consecutive elements and somewhat appear like ordinary integers, mainly in an asymptotic sense. In this letter we make precise this asymptotic behavior by proving four theorems concerning Parry β\beta-integers.Comment: 17 page

    Similar works