The paper proposes a method for constructing a sparse estimator for the
inverse covariance (concentration) matrix in high-dimensional settings. The
estimator uses a penalized normal likelihood approach and forces sparsity by
using a lasso-type penalty. We establish a rate of convergence in the Frobenius
norm as both data dimension p and sample size n are allowed to grow, and
show that the rate depends explicitly on how sparse the true concentration
matrix is. We also show that a correlation-based version of the method exhibits
better rates in the operator norm. We also derive a fast iterative algorithm
for computing the estimator, which relies on the popular Cholesky decomposition
of the inverse but produces a permutation-invariant estimator. The method is
compared to other estimators on simulated data and on a real data example of
tumor tissue classification using gene expression data.Comment: Published in at http://dx.doi.org/10.1214/08-EJS176 the Electronic
Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of
Mathematical Statistics (http://www.imstat.org