Within the framework of the covariant formulation of light-front dynamics, we
develop a general non-perturbative renormalization scheme based on the Fock
decomposition of the state vector and its truncation. The counterterms and bare
parameters needed to renormalize the theory depend on the Fock sectors. We
present a general strategy in order to calculate these quantities, as well as
state vectors of physical systems, in a truncated Fock space. The explicit
dependence of our formalism on the orientation of the light front plane is
essential in order to analyze the structure of the counterterms. We apply our
formalism to the two-body (one fermion and one boson) truncation in the Yukawa
model and in QED, and to the three-body truncation in a scalar model. In QED,
we recover analytically, without any perturbative expansion, the
renormalization of the electric charge, according to the requirements of the
Ward identity.Comment: 32 pages, 14 figures, submitted in Phys. Rev.