slides

Cycling at 120 when compared to 80 rev/min increases the accumulated oxygen deficit but does not affect the precision of its calculation

Abstract

The aim of the present study was to determine the influence of pedal rate on the precision and quantification of the accumulated oxygen deficit (AOD). Eight trained male triathletes completed a lactate threshold test, VO2 peak test, 10 x 3 min submaximal exercise bouts and a high-intensity exercise bout, all performed at 80 and 120 rev/min. For both pedal rates the intensities for the sub-maximal and high-intensity tests were relative to the lactate threshold and VO2 peak work rates. The VO2-power regressions were calculated using 5 intensities from above the lactate threshold combined with a y intercept value with VO2 measured after 3 min of exercise. For the 120 compared to the 80 rev/min tests, the lactate threshold work rate (255±13 versus 276±47 Watts) (p<0.01) and VO2 peak work rate (352±17 versus 382±20, Watts) (p<0.05) were lower at 120 rev/m. Conversely, the VO2 peak and the VO2 measured during the exhaustive exercise were the same for both pedal rates (p>0.05). Using linear regression modelling the slope of the VO2-power regression (0.0112 versus 0.010 L/Watt) (p<0.01), the estimated total energy demand (ETED) (5.13±0.75 versus 4.89±0.88 L/min) and the AOD (4.27±0.94 versus 3.66±1.25 L) (p<0.05) were greater at 120 rev/m. However, the 95% confidence interval for the ETED and the standard error of the predicted value were the same for both pedal rates (p>0.05). Our results demonstrate that pedal rate effects the size but not the precision of the calculated AOD and should therefore be considered when developing an AOD protocol

    Similar works

    Full text

    thumbnail-image

    Available Versions