research

Purely orbital diamagnetic to paramagnetic fluctuation of quasi two-dimensional carriers under in-plane magnetic field

Abstract

An external magnetic field, HH, applied parallel to a quasi two-dimensional system modifies quantitatively and qualitatively the density of states. Using a self-consistent numerical approach, we study how this affects the entropy, SS, the free energy, FF, and the magnetization, MM, for different sheet carrier concentrations, NsN_s. As a prototype system we employ III-V double quantum wells. We find that although MM is mainly in the opposite direction of HH, the system is not linear. Surprisingly βˆ‚M/βˆ‚H\partial M / \partial H swings between negative and positive values, i.e., we predict an entirely orbital diamagnetic to paramagnetic fluctuation. This phenomenon is important compared to the ideal de Haas-van Alphen effect i.e. the corresponding phenomenon under perpendicular magnetic field.Comment: 4 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019