Abstract

We show that hidden-sector dark matter is a generic feature of the type IIB string theory landscape and that its lifetime may allow for a discovery through the observation of very energetic gamma-rays produced in the decay. Throats or, equivalently, conformally sequestered hidden sectors are common in flux compactifications and the energy deposited in these sectors can be calculated if the reheating temperature of the standard model sector is known. Assuming that throats with various warp factors are available in the compact manifold, we determine which throats maximize the late-time abundance of sequestered dark matter. For such throats, this abundance agrees with cosmological data if the standard model reheating temperature was 10^10 - 10^11 GeV. In two distinct scenarios, the mass of dark matter particles, i.e. the IR scale of the throat, is either around 10^5 GeV or around 10^10 GeV. The lifetime and the decay channels of our dark matter candidates depend crucially on the fact that the Klebanov-Strassler throat is supersymmetric. Furthermore, the details of supersymmetry breaking both in the throat and in the visible sector play an essential role. We identify a number of scenarios where this type of dark matter can be discovered via gamma-ray observations.Comment: 36 pages, 3 figures; v2: references added, v3: introduction extended and typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019