We investigate Bose-Einstein condensation for interacting bosons at zero and
nonzero temperature. Functional renormalization provides us with a consistent
method to compute the effect of fluctuations beyond the Bogoliubov
approximation. For three dimensional dilute gases, we find an upper bound on
the scattering length a which is of the order of the microphysical scale -
typically the range of the Van der Waals interaction. In contrast to fermions
near the unitary bound, no strong interactions occur for bosons with
approximately pointlike interactions, thus explaining the high quantitative
reliability of perturbation theory for most quantities. For zero temperature we
compute the quantum phase diagram for bosonic quasiparticles with a general
dispersion relation, corresponding to an inverse microphysical propagator with
terms linear and quadratic in the frequency. We compute the temperature
dependence of the condensate and particle density n, and find for the critical
temperature T_c a deviation from the free theory, Delta T_c/T_c = 2.1 a
n^{1/3}. For the sound velocity at zero temperature we find very good agreement
with the Bogoliubov result, such that it may be used to determine the particle
density accurately.Comment: 21 pages, 16 figures. Reference adde