research

Metallicity and Physical Conditions in the Magellanic Bridge

Abstract

We present a new analysis of the diffuse gas in the Magellanic Bridge (RA>3h) based on HST/STIS E140M and FUSE spectra of 2 early-type stars lying within the Bridge and a QSO behind it. We derive the column densities of HI (from Ly\alpha), NI, OI, ArI, SiII, SII, and FeII of the gas in the Bridge. Using the atomic species, we determine the first gas-phase metallicity of the Magellanic Bridge, [Z/H]=-1.02+/-0.07 toward one sightline, and -1.7<[Z/H]<-0.9 toward the other one, a factor 2 or more smaller than the present-day SMC metallicity. Using the metallicity and N(HI), we show that the Bridge gas along our three lines of sight is ~70-90% ionized, despite high HI columns, logN(HI)=19.6-20.1. Possible sources for the ongoing ionization are certainly the hot stars within the Bridge, hot gas (revealed by OVI absorption), and leaking photons from the SMC and LMC. From the analysis of CII*, we deduce that the overall density of the Bridge must be low (<0.03-0.1 cm^-3). We argue that our findings combined with other recent observational results should motivate new models of the evolution of the SMC-LMC-Galaxy system.Comment: Accepted for publication in the Ap

    Similar works