The Application of the Chemometric Methods for Classification of Special Purpose Flour According to the Requirements of the Processors

Abstract

U radu su primijenjene deskriptivne statističke i kemometrijske metode analize podataka. Analizirane su prosječne vrijednosti svojstava brašna izmjerene tijekom 12 godina. Iz 24 kultivara pšenice proizvedena su u laboratoriju pojedinačna brašna i na njima je određeno 19 kemijskih i reoloških svojstava kvalitete. Rezultati su obrađeni programskim paketom „Statistica“. Deskriptivnom statističkom analizom određene su srednja vrijednost, standardna devijacija, koeficijent varijabilnosti te minimalna i maksimalna vrijednost svakog svojstva. Primjenom kemometrijskih metoda (analiza glavnih komponenti i klaster analiza) smanjen je broj varijabli potrebnih za objašnjavanje varijabilnosti seta podataka, a varijable su grupirane u klastere. Analizom glavnih komponenti utvrđeno je da je samo šest svojstvenih vrijednosti potrebno za opisati varijabilnost cijelog skupa podataka s više od 95 % točnosti. Klaster analizom provedeno je grupiranje svojstava brašna prema jakosti utjecaja na varijabilnost. Izvedeni su zaključci o prikladnosti pojedinog kultivara za proizvodnju namjenskog brašna prema zahtjevima proizvođača za odabrane prehrambene proizvode.Descriptive statistical and chemometric data analysis were used in this thesis. The average values of flour properties measured over 12 years were analyzed. Of the 24 wheat cultivars, individual flours were produced and 19 chemical and rheological properties were determined. The results were processed by the "Statistica" program package. Using descriptive statistical analyzes the mean values, standard deviations, variability coefficients and minimum and maximum values of each property were determined. Using the chemometric methods (principal component analysis and cluster analysis), the number of variables needed to explain the variability of the data set was reduced and the variables were grouped into clusters. By analyzing the principal components, only six eigenvalues were determined for describing the variability of the entire set of data with more than 95% accuracy. Cluster analysis was carried out for grouping of flour properties according to the influence on variability. Conclusions were made on the suitability of a particular cultivar for the production of flour based on the manufacturers' requirements for the selected food products

    Similar works