We have investigated the formation of close-in extrasolar giant planets
through a coupling effect of mutual scattering, Kozai mechanism, and tidal
circularization, by orbital integrations. We have carried out orbital
integrations of three planets with Jupiter-mass, directly including the effect
of tidal circularization. We have found that in about 30% runs close-in planets
are formed, which is much higher than suggested by previous studies. We have
found that Kozai mechanism by outer planets is responsible for the formation of
close-in planets. During the three-planet orbital crossing, the Kozai
excitation is repeated and the eccentricity is often increased secularly to
values close enough to unity for tidal circularization to transform the inner
planet to a close-in planet. Since a moderate eccentricity can remain for the
close-in planet, this mechanism may account for the observed close-in planets
with moderate eccentricities and without nearby secondary planets. Since these
planets also remain a broad range of orbital inclinations (even retrograde
ones), the contribution of this process would be clarified by more observations
of Rossiter-McLaughlin effects for transiting planets.Comment: 15 pages, 16 figures, Accepted for publication in Ap