slides

Divide and concur: A general approach to constraint satisfaction

Abstract

Many difficult computational problems involve the simultaneous satisfaction of multiple constraints which are individually easy to satisfy. Such problems occur in diffractive imaging, protein folding, constrained optimization (e.g., spin glasses), and satisfiability testing. We present a simple geometric framework to express and solve such problems and apply it to two benchmarks. In the first application (3SAT, a boolean satisfaction problem), the resulting method exhibits similar performance scaling as a leading context-specific algorithm (walksat). In the second application (sphere packing), the method allowed us to find improved solutions to some old and well-studied optimization problems. Based upon its simplicity and observed efficiency, we argue that this framework provides a competitive alternative to stochastic methods such as simulated annealing.Comment: 4 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020