University of Zagreb. Faculty of Science. Department of Mathematics.
Abstract
Analiza omeđivanja podataka (AOMP) neparametarska je metoda koja se zasniva na linearnom programiranju, a njome se koristi za ocjenjivanje relativne efikasnosti usporedivih entiteta na osnovi empiričkih podataka o njihovim inputima i outputima. Pogodna je u slučajevima kada ostali pristupi ne daju zadovoljavajuće rezultate. U prvom poglavlju smo se upoznali sa najosnovnijim AOMP modelom, CCR modelom, te smo kroz dualnu zadaću otkrili izvore neefikasnosti koji nisu otkriveni primarnim problemom, viškove inputa i manjkove outputa. AOMP je identificirala efikasne poslovnice banaka koje predstavljaju primjere dobroga poslovanja i neefikasne poslovnice banaka. Utvrđeni su izvori i iznosi neefikasnosti u svakom inputu i outputu, i dane su smjernice za potrebna poboljšanja. U drugom poglavlju smo se upoznali s ”two-stage” AOMP, modelom koji osim inputa xi i outputa yj koristi i intermedijarne mjere zd.Za svakog DO se koriste inputi za proizvodnju outputa koji postaju inputi u drugoj fazi. Te outpute iz prve faze nazivamo intermedijarnim mjerama. U drugoj fazi se potom koriste intermedijarne mjere kao inputi za proizvodnju outputa. Ukupna efikasnost produkt je efikasnosti svakog danog potprocesa. Zatim smo kroz primjer s 24 neživotna osiguranja usporedili dobivene rezultate efikasnosti tzv. relacijskog model i nezavisnog modela. Nezavisni model u kojem su efikasnosti određene kao efikasnosti nezavisnih procesa korištenjem osnovnog CCR modela iz prvog dijela. Rezultati su pokazali da nezavisni model daje neobične rezultate za nekoliko DO, dok relacijski model uvijek daje značajne i pouzdane rezultate za sve DO.Data Envelopment Analysis (DEA) is a non-parametric linear programming-based technique used for evaluating the relative efficiency of homogenous operating entities on the basis of empirical data on their inputs and outputs. It is suitable in cases where other approaches do not provide satisfactory results. In the first chapter, we introduced the basic DEA model, the CCR model, and through the dual problem we discovered sources of inefficiency that were not detected through the primal problem, input and output slacks. DEA identified efficient bank branches as benchmark members and inefficient bank branches. Sources and amounts of relative inefficiency, which were identified in each input and output, establish guidelines for needed improvements. In the second chapter we introduced ”two-stage” DEA, model in which, except inputs xi and outputs yj, we use intermediate measures zd as well. For every DMU, the first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are therefore called intermediate measures. The second stage then uses these intermediate measures to produce outputs. The efficiency of the whole process can be decomposed into the product of the efficiencies of the two sub-processes. In the example with 24 non-life insurance companies we compared efficiency of the relational model and the independent model. In the independent model efficiencies are calculated independently by using basic CCR model from the first chapter. The results show that the independent model may produce unusual results for several companies while the relational model always produces meaningful and reliable results for all companies