Klasteriranje k-sredinama

Abstract

U ovom radu prikazan je algoritam klasteriranja kk - sredinama. Započinje davanjem osnovnih pojmova i opisom podjele algoritama klasteriranja na hijerarhije i particijske. U nastavku se opisuju osnovni algoritam kk - sredina i njegove varijacije: fuzzy kk - sredine, sferne kk - sredine, jezgrene kk - sredine i harmonijske kk - sredine. Također, za sferne kk - sredine je prikazano unaprjeđenje metodom prve varijacije, dok za jezgrene kk - sredine je prikazana nadogradnja uvođenjem težina. Na kraju rada je prikazana kvantizacija boja na slikama pomoću osnovnog algoritma kk - sredina, te usporedba jezgrenog i osnovnog algoritma na primjeru. U dodatku se nalaze kodovi napisani u programskom okruženju MATLAB pomoću kojih su se dobili primjeri u trećem poglavlju.This paper presents kk - means clustering algorithm. It starts with basic concepts and it gives description of division of clustering algorithms into hierarchical and partitioning. Further, basic kk-means algorithm and few of its variations such as Fuzzy kk-means, Spherical kk-means, Kernel kk-means and Harmonic kk-means, are described. Also, for Spherical kk-means it’s described improvement with First Variation method, and for Kernel kk-means it is described upgrade by bringing weights into algorithm. At the end of this paper it is shown how we can do quantization of color in the images with basic kk-means algorithm environment. Also, comparison between basic and Kernel kk-means algorithms is given using an example. The Appendix contains MATLAB codes which are used to make examples in 3rd chapter

    Similar works