I propose a new paradigm for solar coronal heating viewed as a
self-regulating process keeping the plasma marginally collisionless. The
mechanism is based on the coupling between two effects. First, coronal density
controls the plasma collisionality and hence the transition between the slow
collisional Sweet-Parker and the fast collisionless reconnection regimes. In
turn, coronal energy release leads to chromospheric evaporation, increasing the
density and thus inhibiting subsequent reconnection of the newly-reconnected
loops. As a result, statistically, the density fluctuates around some critical
level, comparable to that observed in the corona. In the long run, coronal
heating can be represented by repeating cycles of fast reconnection events
(nano-flares), evaporation episodes, and long periods of slow magnetic stress
build-up and radiative cooling of the coronal plasma.Comment: 4 pages; Phys. Rev. Lett., in pres