Mehatronički pristup pozicioniranju ultravisokih preciznosti i točnosti

Abstract

Ultra-high precision mechatronics positioning systems are critical devices in current precision engineering and micro- and nano-systems’ technologies, as they allow repeatability and accuracy in the nanometric domain to be achieved. The doctoral thesis deals thoroughly with nonlinear stochastic frictional effects that limit the performances of ultra-high precision devices based on sliding and rolling elements. The state-of-the-art related to the frictional behavior in the pre-sliding and sliding motion regimes is considered and different friction models are validated. Due to its comprehensiveness and simplicity, the generalized Maxwell-slip (GMS) friction model is adopted to characterize frictional disturbances of a translational axis of an actual multi-degrees-of-freedom point-to-point mechatronics positioning system aimed at handling and positioning of microparts. The parameters of the GMS model are identified via innovative experimental set-ups, separately for the actuator-gearhead assembly and for the linear guideways, and included in the overall MATLAB/SIMULINK model of the used device. With the aim of compensating frictional effects, the modeled responses of the system are compared to experimental results when the system is controlled by means of a conventional proportional-integral-derivative (PID) controller, when the PID controller is complemented with an additional feed-forward model-based friction compensator and, finally, when the system is controlled via a self-tuning adaptive regulator. The adaptive regulator, implemented within the real-time field programmable gate array based control system, is proven to be the most efficient and is hence used in the final repetitive point-to-point positioning tests. Nanometric-range precision and accuracy (better than 250 nm), both in the case of short-range (micrometric) and long-range (millimeter) travels, are achieved. Different sensors, actuators and other design components, along with other control typologies, are experimentally validated in ultra-high precision positioning applications as well.Mehatronički sustavi ultra-visokih (nanometarskih) preciznosti i točnosti pozicioniranja su u današnje vrijeme vrlo važni u preciznom inženjerstvu i tehnologiji mikro- i nano-sustava. U disertaciji se temeljito analiziraju nelinearni stohastički učinci trenja koji vrlo često ograničavaju radna svojstva sustava za precizno pozicioniranje temeljenih na kliznim i valjnim elementima. Analizira se stanje tehnike za pomake pri silama manjim od sile statičkog trenja, kao i u režimu klizanja, te se vrednuju postojeći matematički modeli trenja. U razmatranom slučaju mehatroničkog sustava ultra-visokih preciznosti i točnosti pozicioniranja, namijenjenog montaži i manipulaciji mikrostruktura, trenje koje se javlja kod linearnih jednoosnih pomaka se, zbog jednostavnosti i sveobuhvatnosti toga pristupa, modelira generaliziranim Maxwell-slip (GMS) modelom trenja. Parametri GMS modela se identificiraju na inovativnim eksperimentalnim postavima, i to posebno za pokretački dio analiziranog sustava, koji se sastoji od istosmjernog motora s reduktorom, te posebno za linearni translator. Rezultirajući modeli trenja se zatim integriraju u cjeloviti model sustava implementiran u MATLAB/SIMULINK okruženju. S ciljem minimizacije utjecaja trenja, modelirani odziv sustava uspoređuje se potom s eksperimentalnim rezultatima dobivenim na sustavu reguliranom pomoću često korištenog proporcionalno-integralno-diferencijalnog (PID) regulatora, kada se sustav regulira po načelu unaprijedne veze, te kada se regulira prilagodljivim upravljačkim algoritmom. Regulator s prilagodljivim vođenjem, implementiran unutar stvarno-vremenskog sustava temeljenog na programibilnim logičkim vratima, pokazao se kao najbolje rješenje te se stoga koristi u uzastopnim eksperimentima pozicioniranja iz točke u točku, koji predstavljaju željenu funkcionalnost razmatranog sustava. Postignute su tako nanometarska preciznost i točnost (bolje od 250 nm) i to kako kod kraćih (mikrometarskih), tako i duljih (milimetarskih) pomaka. U završnom se dijelu disertacije eksperimentalno analizira i mogućnost korištenja drugih pokretača, osjetnika i strojnih elemenata kao i različitih upravljačkih pristupa pogodnih za ostvarivanje ultra-visokih preciznosti i točnosti pozicioniranja

    Similar works