The properties of the highest velocity ejecta of normal Type Ia supernovae
(SNe Ia) are studied via models of very early optical spectra of 6 SNe. At
epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II
6355 line velocity (HVG) have a larger photospheric velocity than SNe with a
slowly evolving Si II 6355 line velocity (LVG). Since the two groups have
comparable luminosities, the temperature at the photosphere is higher in LVG
SNe. This explains the different overall spectral appearance of HVG and LVG
SNe. However, the variation of the Ca II and Si II absorptions at the highest
velocities (v >~ 20,000 km/s) suggests that additional factors, such as
asphericity or different abundances in the progenitor white dwarf, affect the
outermost layers. The C II 6578 line is marginally detected in 3 LVG SNe,
suggesting that LVG undergo less intense burning. The carbon mass fraction is
small, only less than 0.01 near the photosphere, so that he mass of unburned C
is only <~ 0.01 Msun. Radioactive 56Ni and stable Fe are detected in both LVG
and HVG SNe. Different Fe-group abundances in the outer layers may be one of
the reasons for spectral diversity among SNe Ia at the earliest times. The
diversity among SNe Ia at the earliest phases could also indicate an intrinsic
dispersion in the width-luminosity relation of the light curve.Comment: 13 pages, 10 figures, Accepted for publication in The Astrophysical
Journa