In this paper we present axisymmetric nonlinear simulations of magnetized
Ekman and Stewartson layers in a magnetized Taylor-Couette flow with a
centrifugally stable angular-momemtum profile and with a magnetic Reynolds
number below the threshold of magnetorotational instability. The magnetic field
is found to inhibit the Ekman suction. The width of the Ekman layer is reduced
with increased magnetic field normal to the end plate. A uniformly-rotating
region forms near the outer cylinder. A strong magnetic field leads to a steady
Stewartson layer emanating from the junction between differentially rotating
rings at the endcaps. The Stewartson layer becomes thinner with larger Reynolds
number and penetrates deeper into the bulk flow with stronger magnetic field
and larger Reynolds number. However, at Reynolds number larger than a critical
value ∼600, axisymmetric, and perhaps also nonaxisymmetric, instabilities
occur and result in a less prominent Stewartson layer that extends less far
from the boundary.Comment: 24 pages, 12 figures, accepted by PRE, revision according to referee