Using pharmacokinetic and pharmacodynamic data in early decision making regarding drug development: a phase I clinical trial evaluating tyrosine kinase inhibitor, AEE788.

Abstract

PURPOSE: In this first-in-human study of AEE788, a tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), HER-2, and VEGFR-2, a comprehensive pharmacodynamic program was implemented in addition to the evaluation of safety, pharmacokinetics, and preliminary efficacy of AEE788 in cancer patients. EXPERIMENTAL DESIGN: Patients with advanced, solid tumors received escalating doses of oral AEE788 once daily. Primary endpoints were to determine dose-limiting toxicities (DLTs) and maximum-tolerated dose (MTD). A nonlinear model (Emax model) was used to describe the relationship between AEE788 exposure and target-pathway modulation in skin and tumor tissues. RESULTS: Overall, 111 patients were treated (25 to 550 mg/day). DLTs included rash and diarrhea; MTD was 450 mg/day. Effects on biomarkers correlated to serum AEE788 concentrations. The concentration at 50% inhibition (IC(50)) for EGFR in skin (0.033 μmol/L) and tumor (0.0125 μmol/L) were similar to IC(50) in vitro suggesting skin may be surrogate tissue for estimating tumor EGFR inhibition. No inhibition of p-MAPK and Ki67 was observed in skin vessels at ≤ MTD. Hence, AEE788 inhibited EGFR, but not VEGFR, at doses ≤ MTD. A total of 16 of 96 evaluable patients showed a >10% shrinkage of tumor size; one partial response was observed. CONCLUSION: Our pharmacodynamic-based study showed effective inhibition of EGFR, but not of VEGFR at tolerable AEE788 doses. Emax modeling integrated with biomarker data effectively guided real-time decision making in the early development of AEE788. Despite clinical activity, target inhibition of only EGFR led to discontinuation of further AEE788 development

    Similar works