Evaluation und Weiterentwicklung eines kapazitiven taktilen Näherungssensors

Abstract

Die vorliegende Arbeit hat die Technologie eines kapazitiven taktilen Näherungssensors zum Thema. Zunächst wird anhand eines existierenden Sensors gezeigt, wie dieser in der Robotik in zwei Aufgabenbereichen gewinnbringend eingesetzt werden kann: in der robusten Manipulation und in der Überwachung des Umfelds des Roboters. Im Bereich der Manipulation werden zwei neue Untergebiete für diese Art von Sensoren erschlossen: die Haptische Exploration und die Telemanipulation. Dann wird diese Technologie in einem neuen Entwurf entscheidend weiterentwickelt, indem ihre Funktionalität erweitert, ihre Integrierbarkeit verbessert und ihre Ortsauflösung erhöht wird. Für den Bereich der Manipulation wird ein Zwei-Backen-Greifer mit vorhandenen Sensormodulen ausgestattet. Eine gradientenbasierte Regelung ermöglicht das berührungslose Ausrichten an Objekten in den sechs Raumfreiheitsgraden. Diese Methode ist Grundlage für die weiteren Methoden der Haptischen Exploration und der Telemanipulation. Die traditionelle Haptische Exploration wird erweitert, indem berührungslose Explorationsschritte eingeführt werden, welche effizient ausgeführt werden können. Die Telemanipulation beinhaltet, dass der Nutzer des Systems eine Kraftrückkopplung spürt, welche mit dem Gradienten, der durch die Näherungssensoren detektiert wird, korrespondiert. Mit dieser Unterstützung kann der Nutzer Objekte effizienter explorieren und greifen. Die Überwachung des Umfelds des Roboters wird realisiert, indem ein End-Effektor mit den vorhandenen Sensormodulen ausgestattet wird. In einem Szenario zur Konturverfolgung bzw. Kollisionsvermeidung wird gezeigt, dass der End-Effektor unvorhergesehene Hindernisse erfolgreich umfahren kann. Im vorgestellten Ansatz wird gezeigt, dass die geschätzte Krümmung der Hindernisfläche für eine prädiktive Regelung verwendet werden kann. Aus der anwendungsbezogenen Evaluation des Sensors werden die Anforderungen des neuen Entwurfs abgeleitet. Der Sensor wird in seiner Funktionalität erweitert, insbesondere mit der Fähigkeit, im beidseitig-kapazitiven Modus zu messen. Dieser Modus verbessert die Robustheit bei der Detektion von nicht leitenden Materialien. Hinsichtlich der Integrierbarkeit wird der Sensor modularisiert, d. h. einzelne Sensoreinheiten sind in der Lage autark zu messen und die Signale zu verarbeiten. Schließlich wird eine flexible Ortsauflösung für den Sensor realisiert, damit dieser situativ eine höhere Ortsauflösung oder eine höhere Empfindlichkeit aufweisen kann. Es wird gezeigt, dass sich die Methoden, welche für den ersten Sensor entwickelt wurden, auch mit dem neuen Sensor umsetzen lassen. Durch die bessere Integrierbarkeit und Vielseitigkeit werden die Voraussetzungen für eine weitere Verbreitung der Technologie geschaffen

    Similar works