Randomized parallel motion planning for robot manipulators

Abstract

We present a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on a randomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace.The path planning system works in the discretized configuration space, which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to find a path connecting the initial configuration to the goal via a number of randomly generated subgoal configurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried out on the parallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the efficiency of motion planning significantly

    Similar works