The Urban Heat Island (UHI) effect describes the difference in temperature between cities and their surrounding areas. However, temperature differences within city limits, so-called Intra-Urban Heat Islands (IUHI), affect human health as well as the energy demands in local areas. In order to anticipate and mitigate the resulting impacts of heat through urban planning, a method to reliably detect these local areas is needed. Existing methods from the geo-statistical field can identify these areas. But these statistics, depending on their parametrization, can be unstable in their detection of hotspots, in particular temperature hotspots. In this paper, we propose a modification of the well-known Getis-Ord (Gβ) statistic, called the Focal Gβ statistic. This modification replaces the computation of the global mean and standard deviation with their focal counterparts. We define the stability of our approach by introducing a stability metric called Stability of Hotspot (SoH), which requires that hotspots have to be in similar areas regardless of the chosen weight matrix. The results are evaluated on real-world temperature data for the city of Karlsruhe