High-Q microcavities: characterization and optomechanical applications

Abstract

In this thesis we tried to address several important problems in modern photonic research. We developed a novel tool for complex analysis of integrated photonic circuits and components. The technique allows to see the time-response of the studied structures on sub-picosecond scale and even to image the pulse propagation resolving the time-frames on the same scale. We report investigation of direct laser written polymeric photonic components and advances in double layered electron beam lithographically fabricated complex photonic circuits. Then introducing a smart material that is capable of changing the its shape in response to external stimuli, we show the material application in photonics and optomechanics. In a separate chapter we demonstrate a novel micro robotic device that is being several hundred microns in size can be controlled remotely by a laser beam. As presented micro gripper can catch and release different kinds of particles, it is also capable of autonomous action, when that act of gripping is triggered by a color of a target. In the last part we present a principle of optomechanical tuning of photonic components. Although this demonstration is not complete, the main principle, however, is evident

    Similar works