CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Genetically modified human umbilical cord blood mononuclear cells as potential stimulators of neuroregeneration in degenerative disorders of central nervous system
Authors
Guseva D.
Islamov R.
Kiyasov A.
Rizvanov A.
Publication date
1 January 2013
Publisher
Abstract
Gene-cell therapy is a new step for the treatment of different human disorders including central nervous system degenerative diseases. In this review we focused on the last challenges in the field of human umbilical cord blood mononuclear cells transplantation - An attempt to support neuronal cells survival and to stimulate the neuroregeneration. As a potential therapy for the treatment of neurodegenerative diseases we reviewed the latest advances in gene modification of human umbilical cord blood mononuclear cells as a novel tool for the effective delivery of neuroprotective factors and growth factors in the injured or degenerative areas of the central nervous system under pathological conditions. The main topic of this review is the potential therapy of the amyotrophic lateral sclerosis - The progressive neurodegenerative disorder affecting primarily upper and lower motoneurons - by using genetically modified human umbilical cord blood mononuclear cells. The results from the up-to-date experiments indicated the opportunity to obtain differentiated macrophages, endothelial cells, or astrocytes from the genetically modified human umbilical cord blood mononuclear cells after their transplantation in the mouse model of the amyotrophic lateral sclerosis. Taken together, these data build the high-capacity platform for the supporting of degenerating neurons, structural and functional recovery of the brain and spinal cord after trauma, ischemia and other neurodegenerative disorders. © Human stem cells institute, 2013
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/140650
Last time updated on 07/05/2019
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/103182
Last time updated on 07/05/2019