Effects of nickel ions implantation and subsequent thermal annealing on structural and magnetic properties of titanium dioxide

Abstract

© Published under licence by IOP Publishing Ltd. Wide bandgap semiconducting rutile (TiO2) doped with 3d-elements is a promising material for spintronic applications. In our work a composite material of TiO2:Ni has been formed by using implantation of Ni+ ions into single-crystalline (100)- and (001)- plates of TiO2. Sub-micron magnetic layers of TiO2 containing nickel dopant have been obtained at high implantation fluence of 1×1017 ion/cm2. A part of the implanted samples was then annealed in vacuum at different temperatures T ann 450-1200 K for 30 min. The influence of the implantation fluence, crystalline orientation, as well as subsequent annealing on the structural and magnetic properties of the nickel-implanted TiO2 have been investigated by using X-ray photoelectron spectroscopy, scanning electron microscopy and coil magnetometry techniques

    Similar works