CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Estimates of Hardy-Rellich constants for polyharmonic operators and their generalizations
Authors
Avkhadiev F.
Publication date
1 January 2017
Publisher
Abstract
© Avkhadiev F.G. 2017. We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy's inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/130443
Last time updated on 07/05/2019