CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Chemical functionalization of carbon nanomaterials: Bridging the gap between simple carriers and smart (metalfree) catalysts
Authors
Giambastiani G.
Luconi L.
Rossin A.
Tuci G.
Publication date
1 January 2017
Publisher
Abstract
© 2017 Swiss Chemical Society. The last few years have witnessed a wonderful technological renaissance that boosted the development of carbon-based nanomaterials (CNMs) doped with light heteroelements and featuring hierarchical porous architectures as valuable metal-free catalysts for a number of key industrial transformations. To date, several approaches to their synthesis have been developed, although many of them lack any real control of the final doping and composition. In contrast, chemical functionalization offers a unique and powerful tool to tailor CNMs' chemical and electronic surface properties as a function of their downstream application in catalysis. Different catalytic processes (hydrolysis/esterification/transesterification reactions, C-C bond forming reactions, CO2 derivatization into products of added value and electrochemical oxygen reduction reactions (ORR)) can be conveniently promoted by these materials. In addition, selected examples from this series offer a valuable platform for the in-depth comprehension of the underlying reaction mechanisms. This perspective article offers an overview on the main examples of ad hoc chemically decorated CNMs successfully exploited as metal-free catalysts, highlighting at the same time the importance of the surface chemistry control for the design of more active, metal-free and single-phase heterogeneous catalysts
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/129393
Last time updated on 07/05/2019