We consider a hierarchical model of polymer pinning in presence of quenched
disorder, introduced by B. Derrida, V. Hakim and J. Vannimenius in 1992, which
can be re-interpreted as an infinite dimensional dynamical system with random
initial condition (the disorder). It is defined through a recurrence relation
for the law of a random variable {R_n}_{n=1,2,...}, which in absence of
disorder (i.e., when the initial condition is degenerate) reduces to a
particular case of the well-known Logistic Map. The large-n limit of the
sequence of random variables 2^{-n} log R_n, a non-random quantity which is
naturally interpreted as a free energy, plays a central role in our analysis.
The model depends on a parameter alpha>0, related to the geometry of the
hierarchical lattice, and has a phase transition in the sense that the free
energy is positive if the expectation of R_0 is larger than a certain threshold
value, and it is zero otherwise. It was conjectured by Derrida et al. (1992)
that disorder is relevant (respectively, irrelevant or marginally relevant) if
1/2<alpha<1 (respectively, alpha<1/2 or alpha=1/2), in the sense that an
arbitrarily small amount of randomness in the initial condition modifies the
critical point with respect to that of the pure (i.e., non-disordered) model if
alpha is larger or equal to 1/2, but not if alpha is smaller than 1/2. Our main
result is a proof of these conjectures for the case alpha different from 1/2.
We emphasize that for alpha>1/2 we find the correct scaling form (for weak
disorder) of the critical point shift.Comment: 26 pages, 2 figures. v3: Theorem 1.6 improved. To appear on Probab.
Theory Rel. Field