CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Fate of Organic and Inorganic Nitrogen in Crusted and Non-Crusted Kobresia Grasslands
Authors
Hafner S.
Kuzyakov Y.
+5 more
Miehe G.
Schleuss P.
Unteregelsbacher S.
Xu X.
Zhang L.
Publication date
1 January 2017
Publisher
Abstract
Copyright © 2016 John Wiley & Sons, Ltd.A widespread pattern of the Tibetan plateau is mosaics of grasslands of Cyperaceae and grasses with forbs, interspersed with patches covered by lichen crusts induced by overgrazing. However, the fate of inorganic and organic N in non-crusted and crusted patches in Kobresia grasslands remains unknown. We reported on a field 15N-labeling experiment in two contrasting patches to compare retention of organic and inorganic N over a period of 29 days. 15N as KNO3, (NH4)2SO4 or glycine was sprayed onto soil surface. Crusted patches decreased plant and soil N stocks. More 15N from three N forms was recovered in soil than plants in both patches 29 days after the labeling. In non-crusted patches, 15N recovery by the living roots was about two times higher than in crusted ones, mainly because of higher root biomass. Microorganisms in non-crusted patches were N-limited because of more living roots and competed strongly for N with roots. Inorganic N input to non-crusted patches could alleviate N limitation to plants and microorganisms, and leads to higher total 15N recovery (plant + soil) for inorganic N forms. Compared to non-crusted patches, microorganisms in crusted patches were more C-limited because of depletion of available C caused by less root exudation. Added glycine could activate microorganisms, together with the hydrophobicity of glycine and crusts, leading to higher 15N-glycine than inorganic N. We conclude that overgrazing-induced crusts in Kobresia grasslands changed the fate of inorganic and organic N, and lead to lower total recovery from inorganic N but higher from organic N. Copyright © 2016 John Wiley & Sons, Ltd
Similar works
Full text
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/114561
Last time updated on 07/05/2019