Feedback flashing ratchets are thermal rectifiers that use information on the
state of the system to operate the switching on and off of a periodic
potential. They can induce directed transport even with symmetric potentials
thanks to the asymmetry of the feedback protocol. We investigate here the
dynamics of a feedback flashing ratchet when the asymmetry of the ratchet
potential and of the feedback protocol favor transport in opposite directions.
The introduction of a time delay in the control strategy allows one to
nontrivially tune the relative relevance of the competing asymmetries leading
to an interesting dynamics. We show that the competition between the
asymmetries leads to a current reversal for large delays. For small ensembles
of particles current reversal appears as the consequence of the emergence of an
open-loop like dynamical regime, while for large ensembles of particles it can
be understood as a consequence of the stabilization of quasiperiodic solutions.
We also comment on the experimental feasibility of these feedback ratchets and
their potential applications.Comment: LaTeX, 7 pages, 6 figure