slides

Fluoroscopy-based navigation system in spine surgery

Abstract

The variability in width, height, and spatial orientation of a spinal pedicle makes pedicle screw insertion a delicate operation. The aim of the current paper is to describe a computer-assisted surgical navigation system based on fluoroscopic X-ray image calibration and three-dimensional optical localizers in order to reduce radiation exposure while increasing accuracy and reliability of the surgical procedure for pedicle screw insertion. Instrumentation using transpedicular screw fixation was performed: in a first group, a conventional surgical procedure was carried out with 26 patients (138 screws); in a second group, a navigated surgical procedure (virtual fluoroscopy) was performed with 26 patients (140 screws). Evaluation of screw placement in every case was done by using plain X-rays and post-operative computer tomography scan. A 5 per cent cortex penetration (7 of 140 pedicle screws) occurred for the computer-assisted group. A 13 per cent penetration (18 of 138 pedicle screws) occurred for the non computer-assisted group. The radiation running time for each vertebra level (two screws) reached 3.5 s on average in the computer-assisted group and 11.5 s on average in the non computer-assisted group. The operative time for two screws on the same vertebra level reaches 10 min on average in the non computer-assisted group and 11.9 min on average in the computer-assisted group. The fluoroscopy-based (two-dimensional) navigation system for pedicle screw insertion is a safe and reliable procedure for surgery in the lower thoracic and lumbar spine

    Similar works

    Full text

    thumbnail-image

    Available Versions