research

Maximizing entropy of image models for 2-D constrained coding

Abstract

This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2 £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848

    Similar works