research

Studying the interaction between microquasar jets and their environments

Abstract

In high-mass microquasars (HMMQ), strong interactions between jets and stellar winds at binary system scales could occur. In order to explore this possibility, we have performed numerical 2-dimensional simulations of jets crossing the dense stellar material to study how the jet will be affected by these interactions. We find that the jet head generates strong shocks in the wind. These shocks reduce the jet advance speed, and compress and heat up jet and wind material. In addition, strong recollimation shocks can occur where pressure balance between the jet side and the surrounding medium is reached. All this, altogether with jet bending, could lead to the destruction of jets with power <1036erg/s<10^{36} \rm{erg/s}. The conditions around the outflow shocks would be convenient for accelerating particles up to ∼\sim TeV energies. These accelerated particles could emit via synchrotron and inverse Compton (IC) scattering if they were leptons, and via hadronic processes in case they were hadrons.Comment: 4 pages. Contribution to the proceedings of High Energy Phenomena in Relativistic Outflows, held in Dublin, Ireland, September 24-28, 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020