Effect of human airway trypsin-like protease on intracellular free Ca2+ concentration in human bronchial epithelial cells

Abstract

It has been shown that human airway trypsin-like protease (HAT) is localized in human bronchial epithelial cells (HBEC), and trypsin activates protease-activated receptor-2(PAR-2). Activation of PAR-2 activates G-protein followed by an increase of intracellular free Ca2+, [Ca2+]in. This study was undertaken to clarify whether HAT can activate PAR-2in HBEC or not. RT-PCR showed that HAT mRNA is expressed in HBEC, and PAR-2 mRNA is the most strongly expressed of the known PARs in HBEC. Both PAR-2 agonist peptide (PAR-2 AP) and HAT increased [Ca2+]in in HBEC in a biphasic fashion a prompt, sharp increase (peak I) and a sustained low plateau (peak II). PAR-2 AP over 100-200 μM and HAT over 200-300 mU/ml (0.08-0.12 μM) induced both peak I and II, and PAR-2 AP below100 μM and HAT below 200 mU/ml induced only peak II. Both PAR-2 AP-induced and HAT-induced peak I were induced by Ca2+ mobilization from intracellular stores, because they appeared even in Ca2+-free medium. Both PAR-2 AP-induced and HAT-induced peak II were induced by an influx of extracellular Ca2+, because they were abolished in Ca2+-free medium. The Ca2+ response to HAT was desensitized by exposure of HBEC to PAR-2 AP. These results indicate that HBEC have a functional PAR-2, and HAT regulates cellular functions of HBEC via activation of PAR-2

    Similar works