UCP3 ト Hax-1 ノ ソウゴ サヨウ ニヨル ミトコンドリア ノ カルシウム ノ ウド ノ チョウセツ

Abstract

Mitochondrial Ca2+ plays an important role in the regulations of various cellular functions. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with Ca2+ uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial Ca2+ uptake are not well understood. Here we report that UCP3interacts with HS‐1associated protein X‐1 (Hax‐1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to Ca2+. The hydrophilic sequences within the loop2, matrix-localized hydrophilic domain of mouse UCP3are necessary for binding to Hax‐1of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, interaction of these proteins occurs the calciumdependent manner. Moreover, NMR spectrum of the C-terminal domain of Hax‐1was dramatically changed by removal of Ca2+, suggesting that the C-terminal domain of Hax‐1 underwent a Ca2+-induced conformation change. In the Ca2+-free states, C-terminal Hax‐1 didn’t change the structure, suggesting that Ca2+ binding may induce the change of protein structure of Hax‐1 C-terminus. These studies identify a novel UCP3‐Hax‐1complex regulates the influx of Ca2+ into mitochondria. Thus, the efficacy of UCP3‐Hax‐1in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease

    Similar works